

Data Complexity of Differential Attacks

HGI Cybersec Day, June 5, 2025

Tim Beyne, Gregor Leander, Mariia Mutkovina, Ricardo Rodriguez Reveco

Statistical Attacks

A block cipher is a (family of) permutation(s) $F_k: \mathbb{F}_2^n \to \mathbb{F}_2^n$

- ► Real vs Ideal Block Cipher
- ► *Ideal* is a random uniformly sampled permutation

Distinguisher

$$\begin{array}{cccc}
x & \oplus & x + \alpha & = \alpha \\
\hline
E_{k_1} & E_{k_1} & \\
y & \oplus & y' & = \beta ??
\end{array}$$

If
$$\Pr[y \oplus y' = \beta] = p > \frac{1}{2^n}$$
 we have a (differential) distinguisher

Key Recovery

We split the cipher

$$\begin{array}{ccc}
x & & x + \alpha \\
\hline
E_{k_1} & & E_{k_1} \\
y & & y'
\end{array}$$

Key Recovery

We split the cipher

We go back

X	$x + \alpha$
E_{k_1}	$oxed{E_{k_1}}$
У	y'
7	F.,
F_{k_2}	F_{k_2}
Z	z'
$\boxed{F_{k_2'}^{-1}}$	$\boxed{\mathit{F}_{k_{2}^{\prime}}^{-1}}$
W	w'

Right key cancels rounds

X	$x + \alpha$
E_{k_1}	E_{k_1}
У	y'
F_{k_2}	F_{k_2}
Z	z'
$F_{k_2'}^{-1}$	$\boxed{F_{k_2'}^{-1}}$
W	w'

Right key cancels rounds

 $\label{eq:k2} \text{If } k_2' = k_2, \\ \text{each dotted box is the identity}$

Right key cancels rounds

Wrong key?

	X	$x + \alpha$
	$oxed{E_{k_1}}$	$oxed{ extit{$E_{k_1}$}}$
	У	y'
	$oxed{F_{k_2}}$	F_{k_2}
If $k_2' \neq k_2$?	Z	z'
	$F_{k_2'}^{-1}$	$F_{k_2'}^{-1}$
	W	w'

Wrong key?

Wrong key?

We assume randomness

If $k_2' \neq k_2$?

Wrong key Randomization Hypothesis

Surprisingly underanalyzed

